Устройство, принцип действия, диагностика датчиков температуры

Виды и принцип работы термодатчиков

Основной принцип работы температурных датчиков в системах автоматического управления – преобразование температуры в электрическое значение. Эффективность использования электрических величин обеспечена: удобством передачи на большие расстояния с высокой скоростью, возможностью их обратной трансформации, преобразования в цифровой код, чувствительностью измерений. Различают несколько типов устройств.

Принцип действия устройства основан на термоэлектрическом эффекте: если в замкнутом контуре из двух полупроводников или проводников места спаев (контактов) имеют разную температуру, то в нем возникает электрический ток. Спай, расположенный в среде, в которой происходит измерение температуры, называется «горячим», противоположный контакт – «холодным». Чем больше температура измеряемой среды отличается от температуры воздуха, тем больший электрический ток возникает. Эти измерительные устройства могут иметь изоляционный слой или изготавливаться без него. Во втором случае термопары могут использоваться только в схемах, не контактирующих с «землей».

Термодатчики на схемах

Схематичное изображение термодатчика

Виды термопар

  • Хромель-алюминиевые. В основном применяются в промышленности. Характерные особенности: широкий температурный интервал измерений -200…+13000°C, доступная стоимость. Не допускаются к применению в цехах с высоким содержанием серы.
  • Хромель-копелевые. Применение сходно с предыдущим типом, особенность – сохранение работоспособности только в неагрессивных жидких и газообразных средах. Часто используются для измерения температуры в мартеновских печах.
  • Железо-константовые. Эффективны в разреженной атмосфере.
  • Платинородий-платиновые. Наиболее дорогие. Для них характерны стабильные и точные показания. Используются для измерения высоких температур.
  • Вольфрам-рениевые. Обычно в их конструкции присутствуют защитные кожухи. Основная область применения – измерение сред со сверхвысокими температурами.

Терморезистивные датчики

Принцип действия резистивных датчиков температуры (RTD) основан на зависимости сопротивления проводника или полупроводника от температуры. Для изготовления проводников применяют материалы с высоким температурным коэффициентом сопротивления и линейным соответствием сопротивления и температуры. Указанные характеристики относятся к пластине, в несколько меньшей степени – к меди.

Преимущества проводниковых термометров сопротивления:

  • простая и надежная конструкция, которая обуславливает использование этих устройств в машиностроении и электронике;
  • высокая точность и чувствительность;
  • простые устройства считывания.

Пример – модель 700-101ВАА-В00, в конструкции которой присутствуют платиновая пластинка и никелевые контакты. Платиновые устройства могут работать в пределах -260…+1100°C.

Полупроводниковые датчики температуры демонстрируют высокую стабильность характеристик во времени. Полупроводниковые терморезисторы имеют большой температурный коэффициент сопротивления (ТКС). Датчики температуры с отрицательным ТКС называются термисторами (с ростом температуры сопротивление снижается), с положительным – позисторами (с возрастанием температуры сопротивление увеличивается). Обозначение термисторов – NTC, позисторов – PTC.

Аналоговые и цифровые термометры

Аналоговые

Эти устройства обычно недороги и не требуют сложного ухода. Главная их проблема – шкала. Либо она показывает температуру с высокой точностью, но измерительный интервал при этом очень мал, либо охватывает широкий температурный диапазон, но точность показаний – приблизительна.

Цифровые

Такие устройства дороже, по сравнению с аналоговыми, но их точность гораздо выше. Позволяют производить измерения в широком интервале, применяются в быту и технике.

Датчик температуры охлаждающей жидкости: назначение, устройство, принцип работы

Работа мотора в машине сопряжена с постоянным процессом сгорания топливной смеси. Из-за чего двигатель внутреннего сгорания (ДВС) может перегреться и выйти со строя. Для предотвращения подобных инцидентов ДВС принудительно охлаждается посредством циркуляции специальной жидкости. А вот контроль за ее состоянием производит датчик температуры охлаждающей жидкости (ДТОЖ).

Назначение

Такой датчик предназначен для контроля состояния двигателя авто посредством фиксации температурных изменений жидкости охлаждения. С этой целью его размещают в антифризе, где происходит непосредственное взаимодействие чувствительного элемента и слоя охлаждающей жидкости. Также заметьте, что в некоторых автомобилях размещают два сенсора по отношению ко входному и выходному патрубку системы охлаждения, за счет чего компьютер производит сравнение показаний.

Датчик передает данные измерений на блок управления для дальнейшей регулировки работы системы. Логический блок принимает решение о продолжении работы автомобиля в том же режиме или об уменьшении параметра, влияющего на фактора нагрева. Помимо электронных моделей, существуют и механические сенсоры, которые предназначены не для взаимодействия с логическим блоком, а для вывода информации на термометр в салоне. В случае с механическими моделями водитель сам принимает решение об изменении режима вождения или полной остановке агрегата.

В зависимости от модели машины, датчик предназначается для выполнения таких функций:

  • Контроль температуры в конкретный момент времени для системы охлаждения.
  • Влияние на выбор режима работы, в зависимости от сложившейся ситуации.
  • Подача сигнала к аварийному включению или отключению мотора, при резком нарастании или падении температуры.
  • Контроль опережения или запаздывания зажигания – позволяет регулировать интенсивность выброса выхлопных газов и нагрузку на поршневую систему.
  • Подача сигнала на обогащение топливной смеси в случае недопустимого снижения температуры охлаждающей жидкости.

Устройство и принцип работы

В отличии от устаревших моделей, современные приспособления для контроля температуры, основываются на работе термистора. В соответствии с п.22 ГОСТ 21414-75 это такой нелинейный резистор, который изменяет величину собственного омического сопротивления, в зависимости от степени нагрева или охлаждения.

Устройство датчика температуры охлаждающей жидкости

Рис. 1. Устройство датчика температуры охлаждающей жидкости

Для датчика температуры охлаждающей жидкости применяются резистивные элементы с отрицательным температурным коэффициентом. Это обозначает, что в отличии от классических проводниковых материалов, где с нагреванием омическое сопротивление возрастает, повышение температуры датчика приводит к уменьшению сопротивления.

К примеру, измеряя показания при +20 ºС сопротивление термистора будет составлять 3,5 кОм. При нагревании антифриза до +90 ºС сопротивление датчика упадет до отметки 0,24 кОм. Но, существуют и исключения, к примеру, у автомобилей марки Renault датчик имеет положительный температурный коэффициент.

Принцип действия датчика температуры охлаждающей жидкости базируется на следующей схеме:

  1. В состоянии покоя двигателя охлаждающая жидкость будет иметь сопоставимую с окружающей средой температуру. Сопротивление термистора датчика Rt останется на максимальной отметке и поданное напряжение практически не выдаст ток в цепь индикации логического блока.
  2. При замыкании контактов V в замке зажигания вместе с запуском двигателя будет подано напряжение от аккумулятора А на датчик температуры. По мере нарастания оборотов, сопротивление термистора Rt будет снижаться в соответствии с его характеристикой.
  3. В случае превышения допустимого предела температур, Rt перейдет в режим проводимости. В соответствии с законом Ома величина тока, протекающего через термистор, возрастет. Сигнал придет на логический блок и будет подана команда для снижения объема, впрыскиваемого топлива, или уменьшение числа оборотов коленчатого вала.
  4. При снижении оборотов и мощности мотора, со временем камера сгорания охладится и ДВС придет в норматив температуры. Охлаждающая жидкость остынет и у термистора Rt снова возрастет сопротивление. Величина тока в цепи индикации логического блока снова уменьшится, и автомобиль перейдет в нормальный режим работы.

В зависимости от величины падения напряжения на термисторе датчика Rt, будет оцениваться текущий температурный режим. В данном примере мы рассмотрели электрический метод измерения, но у некоторых типов датчиков может применяться и механический, работающий за счет температурного расширения.

Читайте также  Срок годности резины для авто

Где находится?

Для производства каких-либо операций с датчиком температуры охлаждающей жидкости необходимо четко представлять себе место его установки. Следует отметить, что точка установки будет отличаться в зависимости от модели автомобиля. Поэтому для поиска лучше обратиться к инструкции производителя, где указана позиция соприкосновения с охлаждающей жидкостью.

Место установки датчика температуры охлаждающей жидкости

Рис. 3. Место установки датчика температуры охлаждающей жидкости

Наиболее распространенным местом установки является:

  1. головка блока цилиндров или выпускной патрубок;
  2. верхний шланг радиатора;
  3. корпус термостата;
  4. в некоторых ситуациях может устанавливаться два датчика температуры– на входе и на выходе.

Место установки предусматривает обеспечение контакта чувствительного элемента с охлаждающей жидкостью. Но, в случае утечки антифриза из системы, контакт может нарушиться и контроль температуры прекратиться. В результате этого вы получите некорректные показания, что может повлечь сбой в работе системы.

Признаки поломки

Как и неисправности любого устройства в автомобиле, выход со строя сенсора температуры охлаждающей жидкости может привести к нежелательным последствиям.

При движении машины поломка может проявляться как:

  1. проблематичный запуск мотора в холодную погоду;
  2. нетипичные звуки от выхлопных газов только запущенного мотора;
  3. при достижении максимальной температуры мотор глохнет;
  4. не запускается вентилятор охлаждения при нагревании ДВС;
  5. превышение расхода топлива сверх установленной нормы.

Современные авто выводят данные о нарушении температуры охлаждающей жидкости на дисплей. Причиной неисправности может стать как механическая поломка (сорванная резьба, растрескивание корпуса, перегорание термистора), так и электрическая (короткое замыкание в измерительной цепи или обрыв провода). Чтобы убедиться в правильности вашего предположения, проверьте датчик, и, при необходимости замените его новым.

Проверка и замена

Следует отметить, что появление характерных признаков может обуславливаться и другими поломками. К примеру, поломкой вентилятора охлаждения или нехваткой охлаждающей жидкости. Поэтому для начала необходимо проверить работоспособность и правильность показаний датчика температуры охлаждающей жидкости.

На практике существует довольно большое число методов, одни из которых вы можете реализовать в домашних условиях. Другие, как съем осциллограммы, вам проведут только на станциях техобслуживания. Самостоятельно произведите внешний осмотр датчика охлаждающей жидкости – на нем должны отсутствовать следы ржавчины, подтеки антифриза, трещины и прочие следы.

Если внешне датчик исправен, проверьте его с помощью мультиметра, для этого:

  • Отсоедините шлейф от контактов датчика – вам необходимо получить доступ для проведения замеров.
  • Измерения производятся изначально при холодном ДВС. Если это условие не обеспечено, выкрутите датчик с посадочного места и опустите чувствительный элемент в холодную воду.
  • Подключите щупы мультиметра к выводам датчика и замерьте величину омического сопротивления.
  • Затем запустите ДВС и дождитесь включения вентилятора охлаждения, если вы выкрутили датчик температуры, поместите его в кипяток. Повторно замерьте величину переходного сопротивления.
  • Сравните полученные данные сопротивления для вашей модели автомобиля. К примеру, ниже приведена такая таблица:

Таблица: зависимость сопротивления и падения напряжения датчика температуры от степени нагрева

Температура ОЖ (°С) Сопротивление (Ом) Напряжение (В)
4800 — 6600 4,00 — 4,50
10 4000 3,75-4,00
20 2200 — 2800 3,00 — 3,50
30 1300 3,25
40 1000-1200 2,50 — 3,00
50 1000 2,5
60 800 2,00-2,50
80 270 — 380 1,00-1,30
110 0,5
разрыв цепи 5,0 ±0,1

В рассматриваемом примере в холодном состоянии при +10 ºС сопротивление будет составлять 4000 Ом. После того, как вы опустите его в кипяток, исправный датчик будет иметь сопротивление в пределах 200 – 270 Ом. Если показания кардинально отличаются, налицо поломка сенсора, в таком случае его необходимо заменить.

Для замены датчика температуры охлаждающей жидкости из системы охлаждения слейте антифриз. Отключите шнур питания, если еще не отсоединили его. Затем, при помощи торцевого или рожкового ключа выкрутите сам сенсор.

Установите новый датчик охлаждающей жидкости в посадочное место, обязательно наденьте прокладку. Плотно зажмите его ключом по резьбе до упора.

Плотно зажмите ключом новый датчик

Рис. 8. Плотно зажмите ключом новый датчик

Замена окончена, можете подключить питающий шнур и залить обратно охлаждающую жидкость.

Датчики измерения температуры: типы, принцип работы

датчики измерения температуры 1Практически в любой современной аппаратуре есть датчики температуры. Это устройство, которое позволяет измерить температуру объекта или вещества, используя при этом различные свойства и характеристики измеряемых тел или среды. Не смотря на то, что все термодатчики призваны измерять температуру, разные типы датчиков делают это абсолютно по-разному. Давайте подробнее разберем принцип работы и характеристики основных видов термодатчиков.

Классификация термодатчиков по принципу работы

По принципу измерения все датчики измерения температуры подразделяются на:

  • Термоэлектрические (термопары);
  • Терморезистивные;
  • Полупроводниковые;
  • Акустические;
  • Пирометры;
  • Пьезоэлектрические.

датчики измерения температуры 2

Термоэлектрические датчики температуры (термопары)

Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре. Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений. Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.

Примером такого датчика может служить датчик ТСП Метран-246, который предназначен для измерения температуры твердых тел.

Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.

Видео о датчиках температуры смотрите ниже:

датчики измерения температуры 3

Терморезистивные датчики

Как следует из названия, этот тип датчиков работает по принципу изменения сопротивления проводника при изменении его температуры. Благодаря простой и надежной конструкции, датчики этого типа широко применяются в электронике и машиностроении. Неоспоримым плюсом этих измерителей является высокая точность, чувствительность и простые устройства считывания.

Примером терморезистивного датчика может служить модель 700-101BAA-B00, которая имеет начальное сопротивление в 100 Ом, и диапазон измерений от -70 С° до +500 С°.

Выполнен он с применением платиновой пластинки и никелевых контактов. Широко используется в электронике и промышленных автоматах.

датчики измерения температуры 4

Полупроводниковые термодатчики

Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения. Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения. Кроме того, их можно монтировать прямо на полупроводниковой подложке, что делает этот тип датчиков незаменимым для микроэлектронной промышленности.

Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.

датчики измерения температуры 5

Акустические датчики температуры

Принцип работы этих устройств – разная скорость звука в среде при разной температуре. Зная изначальные данные, можно рассчитать изменения температуры по скорости прохождения звуковой волны в веществе. Это бесконтактный метод, позволяющий измерять температуру в закрытых полостях, а также в среде, недоступной для прямого измерения. Используются такие датчики в медицине и промышленности – там, где проникновение к измеряемому веществу невозможно.

Читайте также  Охлаждающая жидкость Camry 40

датчики измерения температуры 6

Пирометры (тепловизоры)

Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.

Все пирометры по принципу работы подразделяют на интерферометрические, флуоресцентные и датчики на основе растворов, меняющих цвет в зависимости от температуры.

датчики измерения температуры 7

Пьезоэлектрические датчики температуры

Все датчики этого типа работают при помощи кварцевого пьезорезонатора. Вся суть работы – прямой пьезоэффект, то есть изменение линейных размеров пьезоэлемента под воздействием электрического тока. При попеременной подаче разнофазного тока с определенной частотой, пьезорезонатор колеблется, при этом частота его колебаний зависит от температуры. Зная эту зависимость, можно легко преобразовать данные о частоте колебаний резонатора в температуру.

Ещё одно видео о разновидностях термодатчиков:

Благодаря широкому диапазону измерений и высокой точности, такие датчики применяют в основном при проведении исследований и опытов, где нужна высокая надежность и долговечность.

Датчики температуры охлаждающей жидкости.

Датчик температуры деталь электрической системы автомобиля, которая может изменять свои электрические характеристики в зависимости от температуры.
По функции температурные датчики делятся на:
Датчики температуры для блока управления двигателем.
Датчики температуры для указателя (стрелки) приборной панели.
Датчики с несколькими функциями.
Датчики температуры на сигнальную лампу приборной панели (термовыключатели).
Датчики включения вентилятора (термовыключатели).

Датчики температуры для блока управления двигателем, датчики для указателя на приборной панели, датчики с несколькими функциями изменяют свое электрическое сопротивление в зависимости от температуры. В основе их работы лежит эффект изменения сопротивления различных электропроводящих веществ в зависимости от температуры. У большинства металлов с ростом температуры электрическое сопротивление возрастает то есть они обладают позитивным электрическим коэффициентом (PTC — positive temperature coefficient). Для полупроводников характерен отрицательный температурный коэффициент (NTC — negative temperature coefficient) — то есть уменьшение электрического сопротивления с ростом температуры.
В зависимости от конструкции датчика он может иметь один, либо несколько контактов. Если контакт один, то сопротивление измеряется между контактом и корпусом датчика (Рис.1). Если контактов 2, то сопротивление измеряется между ними (Рис.2, Рис.3). Если контактов много, то возможны самые различные варианты (Рис.4, Рис.5).

Подавляющее большинство температурных датчиков имеет резьбовое крепление (Рис.6-Рис.9), хотя, бывают исключения (Рис.10), соответственно датчики имеют шестигранный участок корпуса под ключ различных размеров. По форме резьба может быть цилиндрической или конической, отличаться диаметром и шагом, так же датчики могут иметь уплотняющую прокладку или же не иметь таковую. Форма электрических разъемов может быть самой разнообразной.

Датчики температуры на сигнальную лампу приборной панели работает по принципу замыкания либо размыкания цепи при достижении определенной температуры. Если датчик с одним контактом, то размыкание/замыкание происходит между контактом и корпусом. В этом случае датчики бывают разомкнутые в холодном положении (Рис.11) и замкнутые в холодном положении (Рис.12). Если у датчика два контакта, то размыкание/замыкание происходит между этими контактами. В этом случае датчики, так же бывают разомкнутые в холодном положении (Рис.13) и замкнутые в холодном положении (Рис.14). Так же встречаются двухконтурные датчики (Рис.15).

Датчики включения вентилятора по устройству, принципам работы и вариантов конструкции идентичны датчикам на сигнальную лампу.
Симптоматика выхода температурного датчика из строя зависит от того, какую функцию выполнял данный датчик. Если вышел из строя датчики температуры для блока управления двигателем, то может наблюдаться неустойчивый запуск двигателя (машина плохо заводится), неустойчивые обороты двигателя, снижение мощности двигателя. Если произошла поломка датчика температуры для указателя (стрелки) приборной панели, то наблюдаются неправильные показания этой стрелки. Если ломается датчик температуры на сигнальную лампу приборной панели или датчики включения вентилятора то наблюдается неправильная работа либо сигнальных ламп либо вентиляторов.
Температурные датчики, хотя и являются элементом электрической системы автомобиля, но от их правильной работы зависит в определенной степени и работоспособность системы охлаждения. Это касается датчиков включения вентиляторов охлаждения радиатора охлаждения двигателя. В ряде автомобилей при неисправном датчике включения вентилятора может произойти перегрев двигателя со всеми вытекающими неприятными последствиями.
При поломке температурного датчика его необходимо заменить на новый, так как ремонт старого датчика в кустарных условиях невозможен и нецелесообразен. При подборе датчика нужно быть очень внимательным и использовать только подходящий для данного случая датчик. Это связано с большим разнообразием используемых в автомобилях датчиков, которые даже при внешнем сходстве могут иметь различные электрические характеристики могут различаться зеркально.
Еще больше статей тут.

Датчики температуры. Виды и принцип действия, Как выбрать

Датчики температуры нужны для того, чтобы проконтролировать температуру в помещении, жидкости, твердого объекта или расплавленного металла.

Виды и принцип действия

Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой. Величины могут преобразовываться друг в друга и обратно. Цифровой код создает повышенную точность замера, скорость и чувствительность.

Термопары

Термопара представляет собой две проволоки из разных металлов, спаянных между собой. При разности температур между горячим и холодным концом в цепи возникает электрический ток. Величина этого электрического тока зависит от термоэлектрической силы термопары, составляет от 40 до 60 мкВ, в зависимости от материала термопары. Материал термопары может быть разным. Это могут быть никель-хромовые, хромо-алюминиевые, железо-никелевые, железо-константановые и т.д.

Termopara

Термопара является высокоточным датчиком температуры, однако эту точность достаточно проблематично снять. Термопара является относительным датчиком температуры, уровень ее напряжения имеет зависимость от температурной разности между спаями. При этом холодный спай находится при комнатной температуре или при какой-либо другой.

Рассмотрим работу термопары ближе. Есть две термопары и две температуры горячего и холодного конца. Соответственно ЭДС зависит от разности температур. Температуру холодного спая необходимо компенсировать. Аппаратным способом компенсации является использование второй термопары, которая помещена в заранее известную температуру.

Программным способом компенсации является использование другого датчика температуры, на этот раз абсолютного, который помещается в изотермическую камеру вместе с холодными спаями и контролирует их температуру с заданной точностью. Имеются трудности снятия данных с термопары.

Во-первых , она нелинейная. В ГОСТе заботливо введены коэффициенты полинома для перевода ЭДС в температуру и обратно. Эти полиномы большого порядка, но ничто не запрещает спокойно их посчитать силами контроллера.

Во-вторых , другая проблема заключается в том, что термо-ЭДС термопары измеряется в единицах и сотнях микровольт. Соответственно, использование широко доступных аналогоцифровых преобразователей приведет к полному провалу. Нужны прецизионные многоразрядные малошумящие аналогоцифровые преобразователи для того, чтобы использовать термопару в своих конструкциях.

Терморезисторы

Гораздо более простым способом измерения стало применение терморезисторов. Они работают на зависимости сопротивления материалов от внешней температуры. Металлические термометры сопротивления, в частности платиновые обладают очень высокой точностью и линейностью. Термометры сопротивления определяются двумя основными характеристиками.

Читайте также  Расшифровка кодов неисправности Audi

Datchiki temperatury - termorezistry

Это базовое сопротивление термометра при определенной температуре. В ГОСТе базовым сопротивлением считается сопротивление при 0 градусах по Цельсию. ГОСТ рекомендует использование нескольких номиналов сопротивлений в Омах и температурный коэффициент, который определяется как разность сопротивлений нашей температуры и при 0 градусов, деленной на нашу температуру и t нуля градусов, умноженную на единицу, деленную на базовое сопротивление.

Ткс = (Re – R0c) / (Te – T0c) *1/R0c

В ГОСТе на терморезисторы вы найдете температурный коэффициент для различных термометров из платины, меди и никеля. Кроме того, там присутствуют коэффициенты полинома для расчета температуры из текущего сопротивления резистора. Одной из проблем термометров сопротивления является очень низкий температурный коэффициент сопротивления. Однако, измерять сопротивление с высокой точностью гораздо проще, чем очень малые значения напряжения в отличие от термопар.

Одним из способов измерения сопротивления является включение нашего термосопротивления в цепь источника тока и измерение дифференциального напряжения. Использование полупроводников даст нам температурный коэффициент доли единицы процента, их гораздо проще измерять с помощью аналогоцифровых преобразователей. Есть интегральные микросхемы датчиков температуры, аналоговый выход которых уже соответствует питаемому напряжению. Такие датчики температуры можно напрямую подключать к аналогоцифровому преобразователю и спокойно оцифровывать его с помощью восьми- или десятибитного АЦП.

Datchiki temperatury - preobrazovateli

Комбинированный датчик

Помимо интегральных схем с выходом, существуют датчики с цифровым интерфейсом. Одним из популярных датчиков является комбинированный датчик температуры и влажности серии SHT1. Этот датчик позволяет измерять температуру с точностью + 2 градуса и влажность с точностью + 5 градусов. Главной проблемой данного датчика температуры является то, что там решили оптимизировать интерфейс. Он позволяет подключать параллельные устройства.

Цифровой датчик

Цифровой датчик температуры DS18B20, который представляет собой трехвыводную микросхему, позволяет с высокой точностью до 0,5 градуса получать температуру с множеством параллельно работающих датчиков. В этом датчике широкий интервал температур от -55 до +125 градусов. Основной его недостаток – медлительность. Вычисления с максимальной точностью он делает за 750 мс. Ввиду инерционности корпуса датчика температуры опрашивать его нет никакого смысла.

Бесконтактные датчики (пирометры)

Datchiki temperatury - beskontaktnye

В этом датчике имеется специальная тонкая пленка, поглощающая инфракрасные излучения, тем самым нагревающаяся. Такие бесконтактные термосенсоры используются в тепловизорах. Там имеется не один тепловой датчик, а матрица. Они позволяют на расстоянии до 3 метров детектировать тепловой объект.

Кварцевые преобразователи температуры

Для того, чтобы измерить температуру в интервале -80 +250 градусов применяют кварцевые преобразователи. Они работают на частотной зависимости кварца от температуры. Действие датчиков происходит на частотной зависимости. Функция преобразователя меняется от расположения среза по осям кристалла.

Кварцевые датчики работают с высокой чувствительностью, разрешением, стабильностью. Эти свойства делают их перспективными в использовании. Они получили большое распространение в цифровых термометрах.

Шумовые датчики температуры

Работа шумовых датчиков заключается на зависимости шумовой разности потенциалов на резисторе от температуры. Практически реализовать способ измерения температуры шумовыми датчиками можно, сделав сравнение шумов 2-х одинаковых резисторов, один находится при определенной температуре, 2-й при измеряемой температуре. Шумовые датчики температуры применяются для температурного интервала -270 -1100 градусов.

Преимуществом шумовых датчиков стала возможность измерения температуры в термодинамике на вышеописанной закономерности. Но это осложнено трудным измерением напряжения шума, так как оно мало и сравнимо с шумом усилителя.

Датчики температуры ЯКР (ядерного квадрупольного резонанса)

Термометры ЯКР работают за счет действия градиента поля тока решетки кристалла и момента ядра, которое вызвано отклонением заряда от симметрии сферы. Это создает процессию ядер. Частота имеет зависимость от градиента поля решетки. Для разных веществ имеет величину до тысяч МГц. Градиент зависит от температуры, с ее возрастанием частота ЯКР уменьшается.

Датчики температуры ЯКР образуют ампулу с веществом, помещенную в обмотку индуктивности, которая соединена с контуром генератора. Когда частота генератора совпадает с частотой ЯКР, то энергия генератора поглощается. Допуск замера температуры -263 градуса равен + 0,02 градуса, а температуры 27 градусов +0,002 градуса. Преимуществом термометров ЯКР становится стабильность, неограниченная по времени, недостатком является значительная нелинейность преобразующей функции.

Объемные преобразователи

Объемные датчики действуют на расширении и сжатии веществ при изменении температуры. Диапазон действия преобразователей определяется, насколько стабильны свойства материалов. Датчиками делают измерения температуры в интервале -60 -400 градусов. Допуск измерения составляет от 1 до 5%. Интервал работы датчика с жидкостью может зависеть от температуры закипания и замерзания. Погрешности измерения датчиков на жидкости от 1 до 3%, определяются температурой среды.

Нижняя граница измерения преобразователей на газе определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: